Tunable membranes for free-flow zone electrophoresis in PDMS microchip using guided self-assembly of silica microbeads.
نویسندگان
چکیده
In this paper, we evaluate the strategy of using self-assembled microbeads to build a robust and tunable membrane for free-flow zone electrophoresis in a PDMS microfluidic chip. To fabricate a porous membrane as a salt bridge for free-flow zone electrophoresis, we used silica or polystyrene microbeads between 3-6 μm in diameter and packed them inside a microchannel. After complete evaporation, we infiltrated the porous microbead structure with a positively or negatively charged hydrogel to modify its surface charge polarity. Using this device, we demonstrated binary sorting (separation of positive and negative species at a given pH) of peptides and dyes in standard buffer systems without using sheath flows. The sample loss during sorting could be minimized by using ion selectivity of hydrogel-infiltrated microbead membranes. Our fabrication method enables building a robust membrane for pressure-driven free-flow zone electrophoresis with tunable pore size as well as surface charge polarity.
منابع مشابه
Pneumatic Microvalve-Based Hydrodynamic Sample Injection for High-Throughput, Quantitative Zone Electrophoresis in Capillaries
A hybrid microchip/capillary electrophoresis (CE) system was developed to allow unbiased and lossless sample loading and high-throughput repeated injections. This new hybrid CE system consists of a poly(dimethylsiloxane) (PDMS) microchip sample injector featuring a pneumatic microvalve that separates a sample introduction channel from a short sample loading channel, and a fused-silica capillary...
متن کاملFree-flow zone electrophoresis of peptides and proteins in PDMS microchip for narrow pI range sample prefractionation coupled with mass spectrometry.
In this paper, we are evaluating the strategy of sorting peptides/proteins based on the charge to mass without resorting to ampholytes and/or isoelectric focusing, using a single- and two-step free-flow zone electrophoresis. We developed a simple fabrication method to create a salt bridge for free-flow zone electrophoresis in PDMS chips by surface printing a hydrophobic layer on a glass substra...
متن کاملPdms Microchip Electrophoresis with High Separation Efficiency by Simple and Quick Modification of Phospholipid Polymer
This paper reports the high separation efficiency zone-electrophoresis of proteins in poly(dimethylsiloxane) (PDMS) microchip coated with the physically adsorbed phospholipid polymer, poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-3-(methacryloyloxy)propyltris(trimethylsiloxy)silane (MPTSSi)) (PMMSi), using the simple and quick dip coating method. High suppression of protein adsorption ...
متن کاملScheduling of Multiple Autonomous Guided Vehicles for an Assembly Line Using Minimum Cost Network Flow
This paper proposed a parallel automated assembly line system to produce multiple products having multiple autonomous guided vehicles (AGVs). Several assembly lines are configured to produce multiple products in which the technologies of machines are shared among the assembly lines when required. The transportation between the stations in an assembly line (intra assembly line) and among station...
متن کاملInfluence of polymer structure on electroosmotic flow and separation efficiency in successive multiple ionic layer coatings for microchip electrophoresis.
The effect of successive multiple ionic layer (SMIL) coatings on the velocity and direction of EOF and the separation efficiency for PDMS electrophoresis microchips was studied using different polymer structures and deposition conditions. To date, the majority of SMIL studies have used traditional CE and fused-silica capillaries. EOF was measured as a function of polymer structure and number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 85 24 شماره
صفحات -
تاریخ انتشار 2013